

The Next Stage in Cardiogenic Shock

Timing is everything.

Cardiogenic Shock The unresolved clinical challenge

The problem

Cardiogenic shock (CS) can present in many different stages. It ranges from those at high risk of developing shock to those critically ill with severe multi-system organ failure, hemodynamic collapse and on-going cardiac arrest.¹

It can happen anywhere

Cardiogenic shock can present along multiple points in the pathway of care and develops more frequently after initial presentation to the hospital.²

Cardiogenic shock patients represent a wide spectrum of disease that requires tailored therapy to improve hemodynamic derangements.³

Develop a treatment plan

Identify

Any attempt to improve outcomes in CS should begin with its early identification. Models of care including a multi-disciplinary CS team, hold potential for the early identification and individualized treatment of CS.⁴

Initiate

Experts suggest use of advanced hemodynamic monitoring to diagnose and/or manage patients with CS.¹ To avoid the negative impact of inotropes, consideration should be given to early initiation of intra-aortic balloon pumping.^{5,7}

Evaluate

Quick feedback loops incorporating patient status and hemodynamics are required to assess the response to initial therapies.³

When patients do not respond to treatments initiated, consider the next level of support and transfer to experienced shock centers if required.¹

Stages of Cardiogenic Shock

Cardiogenic Shock Stages	At Risk A patient with risk factors for cardiogenic shock who is not currently experienc- ing signs or symptoms. For example, large acute myocardial infarction, prior infarction, acute and/ or acute on chronic heart failure.	Beginning A patient who has clinical evidence of relative hypotension or tachycardia without hypoperfusion.	Classic A patient presenting with hypoperfusion requiring intervention beyond volume resuscitation (inotrope, pressor, or mechanical support including ECMO). These patients typically present with relative hypotension.	Deteriorating A patient who fails to respond to initial interven- tions. Similar to Stage C and getting worse.	Extremis A patient being supported by multiple interventions who may be experiencing cardiac arrest with ongoing CPR and/or ECMO.
s Physical Signs	 Normal JVP Lung sounds clear Strong distal pulses Normal mentation 	 Elevated JVP Rales in lung fields Strong distal pulses Normal mentation 	 Ashen, mottled, dusky Volume overload Extensive rales Killip class 3 or 4 Non-invasive or invasive ventilation Acute alternation in mental status Urine Output < 30 mL/h 	• Any of stage C	 Near pulselessness Cardiac collapse Mechanical ventilation Defibrillator used
iochemical Markers	• Normal renal function • Normal lactic acid	 Normal lactate Minimal renal function impairment Elevated BNP 	 Lactate ≥ 2 Creatinine doubling OR > 50% drop in GFR Increased LFTs Elevated BNP 	• Any of stage C AND deteriorating	• Lactate ≥ 5 • pH ≤ 7.2
Hemodynamics	 Normotensive (SBP > 100 OR normal for pt.) If hemodynamics done: Cardiac index ≥ 2.5 CVP < 10 PA Sat ≥ 65% 	 SBP < 90 OR MAP <60 OR > 30 mmHg drop Pulse ≥ 100 If hemodynamics done: Cardiac index ≥ 2.2 PA Sat ≥ 65% 	 Drugs/device used to maintain BP above stage B values If hemodynamics done: Cardiac Index < 2.2 RAP/PCWP > 0.8 PCWP > 15 PAPI < 1.85 CPO ≤ 0.6 	 Any of stage C AND requiring multiple pressors OR addition of mechanical circulatory support devices to maintain perfusion 	 No SBP without resuscitation PEA OR Refactory VT/VF Hypotensions despite maximal support

Adapted from the SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock. Endorsed by ACC, AHA, SCCM, and STS.

Any attempt to improve outcomes in cardiogenic shock should begin with early identification.

Models of care including a multi-disciplinary CS team hold potential for early identification and individualized treatment. $^{\!\!\!\!^4}$

Retrospective analysis indicates early use of mechanical circulatory support (MCS) is an important therapeutic intervention.

Early use of intra-aortic balloon counterpulsation is associated with survival benefits, regardless of the etiology.⁵

30-day survival was 76% when IABP was placed within < 1 hour of onset of cardiogenic shock.^{*}

Early initiation of IABP may provide hemodynamic benefit as primary treatment for advanced decompensated heart failure.⁶

Primary circulatory support with the Sensation Plus 50 cc IABP showed a significant increase in improved organ perfusion assessed by SVO2.⁶

Secondary Endpoints	IABP (n=16)	Inotropes (n=16)	P value
∆ Cardiac power output	+0.27 (+0.17; +0.45)	+0.09 (-0.04; +0.21)	0.004
Δ NTproBNP	-59.3 (-78.5; -46.7)	-16.0 (-40.4; +3.3)	<0.001
Cumulative fluid balance	-3,066 (-3,876; -2,205)	-1,198 (-2,251; -70)	0.006
∆ Dyspnea severity score	-4 (-6; -3)	-2 (-3; 0)	0.02
MACE 90 days	6 (38%)	11 (69%)	0.16
90 day mortality	4 (25%)	9 (56%)	0.15

Starting support immediately reduces stroke work, possibly decreasing myocardial oxygen consumption.

IABP counterpulsation decreases LV afterload, preload and intraventricular dyssynchrony.⁶

To avoid the negative impact of vasoactive drugs, consideration should be given to early initiation of IABP therapy.5.7

Evaluate effectiveness

Tailor the care to the patient and escalate as needed.

Mortality with use of inotropes post-IABP⁵

Requirement for minimal pressors/ inotropes after IABP placement were predictors of lower mortality.

Escalation of therapy to devices that can offer greater hemodynamic support should be considered in patients requiring increasing inotropes after IABP placement.

Significant predictors of 30-day mortality on mulitvariate analysis $^{\scriptscriptstyle 5}$

Variables	Odds ratio	95% Confidence limits	<i>P</i> value
Age	1.07	1.03 – 1.10	0.001
Inotropes post-IABP	2.03	1.44 – 2.84	0.000
Time to IABP	1.05	1.01 – 1.09	0.009
Cardiopulmonary resuscitation	2.44	10.4 – 5.72	0.041

Identification of predictors of mortality would allow clinicians to tailor therapy and reserve use of more powerful MCS devices for patients that have more advanced stages of CS.⁵

Evaluating the response to the rapy is critical in making adjustments to the plan of care. ${}^{\scriptscriptstyle 3}$

IABP: the safe first-line MCS option

Minimizing complications is critical to maximize the benefit of treatment.

IABP is unique in its safety profile, cost efficiency and retains its position as the most widely used hemodynamic support device.⁸

Article	Number of patients	Mortality	Bleeding	Stroke	Vascular Complications
Dhruva 2019 ⁹	1680 Matched pairs from NCDR*	Favors IAB Absolute difference 10.9%	Favors IAB Absolute difference 15.4%	NA	NA
Amin 2019 ¹⁰	48,306 Premier database*	Favors IAB p < 0.0001	Favors IAB p = 0.045	Favors IAB p < 0.0001	NA
Wernly 2019 ¹¹	588 Meta-analysis from 4 RCT**	No difference p = 0.38	Favors control p = 0.002	No difference p = 1.00	Favors control p = 0.01
Schrage 2019 ¹²	237 Matched pairs from IABP-Shock II**	No difference p = 0.64	Favors control p < 0.01	NA	Favors control p = 0.01

* Impella vs. IABP

** Impella vs. control (IABP and/or medical treatment)

Recent observational studies from large national, independent databases have shown a decrease in mortality, lower bleeding complications, lower stroke rates and a lower cost with IABP's compared to pVADS.^{9,10}

The use of IABP is associated with significantly fewer complications compared to pVADs.¹²

Cost of complications¹³

Outcome pVAD	With bleeding	Without bleeding	Pvalue
In-hospital Mortality	166/469 (35.4%)	399/1346 (29.6%)	<0.001
Length of Stay	10 days (4-18)	6 days (2-12)	<0.001
Mean Health Care Cost	\$79,518	\$55,484	<0.001

No increased bleeding with IABP

Trial	IABP	No IABP	P value
CRISP AMI: major bleeding ¹⁴	3.1%	1.7%	0.49
CRISP AMI: major vascular ¹⁴	4.3%	1.1%	0.09
SHOCK II: moderate bleeding ¹⁵	17.3%	164%	0.77
SHOCK II: major bleeding ¹⁵	3.3%	4.4%	0.51
SHOCK II: major vascular ¹⁵	4.3%	3.4%	0.53

Trial enrollment: CRISP AMI, n = 337; SHOCK II, n = 600

IABP therapy remains the predominant MCS device, a trusted, valuable first-line option^{9, 10, 16}

References

- 1. Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. *Catheter Cardiovasc Interv.* 2019;94:29-37.
- L Khalid and S.H. Dhakam. A Review of Cardiogenic Shock in Acute Myocardial Infarction. *Curr Cardiol Rev.* 2008 Feb; 4(1): 34–40. doi: 10.2174/157340308783565456.
- Atkinson TM, Ohman EM, O'Neill WW, Rab T, Cigarroa JE. Interventional Scientific Council of the American College of Cardiology. A Practical Approach to Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention: An Interventional Perspective. JACC Cardiovasc Interv. 2016 May 9;9(9):871-83. doi: 10.1016/j.jcin.2016.02.046.
- Jones TL, Nakamura K, McCabe JM. Cardiogenic shock: evolving definitions and future directions in management. *Open Heart.* 2019;6:e000960. doi: 10.1136/openhrt-2018-000960.
- Gul et al. Usefulness of Intra-aortic Balloon Pump in Patients with Cardiogenic Shock, Am J Cardiol. 2019 Mar 1;123(5):750-756. doi: 10.1016/j.amjcard.2018.11.041. Epub 2018 Dec 4.
- den Uil et al. Primary Intra-aortic Balloon Support versus Inotropes for Decompensated Heart Failure and Low Output: A Randomized Trial. *EuroIntervention*. 2019;15:586-593. doi: 10.4244/EIJ-D-19-00254.
- Doll et al. A team-based approach to patients in cardiogenic shock. *Catheter Cardiovasc Interv.* 2016 Sep;88(3):424-33. doi: 10.1002/ccd.26297.
- 8. Treatments, timing and a tomorrow for patients in cardiogenic shock. *Cardiology Todays Intervention*. November/December 2017 (suppl):1-16.
- Dhruva SS. Utilization and outcomes of Impella vs. IABP among patients with AMI complicated by cardiogenic shock undergoing PCI. Presented at: AHA 2019. November 17, 2019. Philadelphia, PA.

- 10. Amin AP, Spertus JA, Curtis JP, et al. The evolving landscape of Impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. *Circulation.* 2019; Epub ahead of print.
- Wernly et al. Mechanical circulatory support with Impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock-a critical appraisal of current data. *Clin Res Cardiol.* 2019 Nov;108(11):1249-1257. doi: 10.1007/s00392-019-01458-2. Epub 2019 Mar 21.
- 12. Schrage et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. *Circulation.* 2019 Mar 5;139(10):1249-1258. doi: 10.1161/ CIRCULATIONAHA.118.036614.
- Redfors et al. Mortality, Length of Stay, and Cost Implications of Procedural Bleeding After Percutaneous Interventions Using Large-Bore Catheters. JAMA Cardiolog. 2017;2(7):798-802. doi: 10.1001/jamacardio.2017.0265.
- Patel et al. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA. 2011 Sep 28;306(12):1329-37. doi: 10.1001/ jama.2011.1280. Epub 2011 Aug 29.
- 15. Thiele et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. *N Engl J Med.* 2012; 367:1287-1296. doi: 10.1056/NEJMoa1208410.
- Vallabhajosyula et al. Mechanical Circulatory Support-Assisted Early Percutaneous Coronary Intervention in Acute Myocardial Infarction with Cardiogenic Shock: 10-Year National Temporal Trends, Predictors and Outcomes. *EuroIntervention*. 2019 Nov 19. pii: EIJ-D-19-00226. doi: 10.4244/EIJ-D-19-00226. [Epub ahead of print].
- Rihal et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care. J Am Coll Cardiol. 2015 May, 65 (19) e7-e26.
- Truesdell AG, Tehrani B, Singh R, et al. "Combat" Approach to Cardiogenic Shock. *Interv Cardiol.* 2018;13(2):81–86. doi:10.15420/icr.2017:35:3.

Emphasis should be on rapid identification of the patient's hemodynamic and critical care needs and deployment of appropriately tailored interventions.⁵

Initiate

Early placement of an appropriate MCS may be considered in those who fail to stabilize or show signs of improvement quickly after initial interventions.¹⁷

Evaluate

Similar to the collection, and analysis of battlefield intelligence, patients should be continually assessed, adjustments made, reassessed and readjusted.¹⁸

Escalate

If there is a need for increasing inotropes, consideration should be given to escalation of therapy to more invasive support devices.

Consideration for transfer to a facility with higher powered devices may be necessary.⁵

GETINGE 🛠

PN: 0002-08-9876 Rev A · MCV00099787 REVA · *GETINGE * and Getinge are trademarks or registered trademarks of Getinge AB, its subsidiaries, or affiliates in the United States or other countries · Copyright 2020 Datascope Corp. All rights reserved · Caution: Federal (U.S.A.) Law restricts this device to sale, distribution and use by or on the order of a physician · \triangle Refer to Instructions for Use for current indications, warnings, contraindications, and precautions · 01/2020

Manufacturer · Datascope Corp., 1300 MacArthur Blvd., Mahwah, NJ 07430 · USA · +1 201 995-8700 or 1 800 777-4222

www.getinge.com